The Influence of Viscous Operator and Wall Boundary Conditions on the Accuracy of the Navier-Stokes Equations
نویسندگان
چکیده
The discretization of the viscous operator in an edge-based flow solver for unstructured grids has been investigated. A compact discretization of the Laplace and thin-layer operators in the viscous terms is used with two different wall boundary conditions. Furthermore, a wide discretization of the same operators is investigated. The resulting numerical operators are all formally second order accurate in space; the wide operator has higher truncation errors. The operators are implemented weakly using a penalty formulation and are shown to be stable for a scalar model problem with given constraints on the penalty coefficients. The different operators are applied to a set of grid convergence test cases for laminar flow in two dimensions up to a large-scale three dimensional turbulent flow problem. The operators converge to the same solutions as the grids are refined with one exception where the wide operator converges to a solution with higher drag. The 2 nd compact discretization, being locally more accurate at a wall boundary than the original 1 st compact operator, reduces the grid dependency somewhat for most test cases. The wide operator performs very well and leads for most test cases to results with minimum spread between coarsest and finest grids. For one test case though, the wide operator has a negative influence on the steady state convergence.
منابع مشابه
Vibrational characteristics of a spinning thermally affected cylindrical shell conveying viscous fluid flow carrying spring-mass systems
In this article, the vibrational behavior of a spinning cylindrical thick shell carrying spring- mass systems and conveying viscos fluid flow under various temperature distributions is investigated. This structure rotates about axial direction and the formulations include the coriolis and centrifugal effects. In addition, this system is conveying viscous fluid, and the related force is calculat...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملEFFECT OF TIME-DEPENDENT TRANSPIRATION ON AXISYMMETRIC STAGNATION-POINT FLOW AND HEATTRANSFER OF A VISCOUS FLUID ON A MOVING CIRCULAR CYLINDER
Effect of time dependent normal transpiration on the problem of unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder moving simultaneously with time-depended angular and axial velocities and with time-dependent wall temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A re...
متن کاملThe influence of boundary conditions on the contact problem in a 3D Navier-Stokes Flow
We consider the free fall of a sphere above a wall in a viscous incompressible fluid. Weinvestigate the influence of boundary conditions on the finite-time occurrence of contactbetween the sphere and the wall. We prove that slip boundary conditions enable tocircumvent the ”no-collision” paradox associated with no-slip boundary conditions. Wealso examine the case of mixed bou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013